

Chemical TXRF: Advantages for Pharmaceutical and Food Testing

Michael E. Rider, Ph.D.

The Woodlands, TX

Michael.Rider@bruker-axs.com

Welcome

Today's Topics

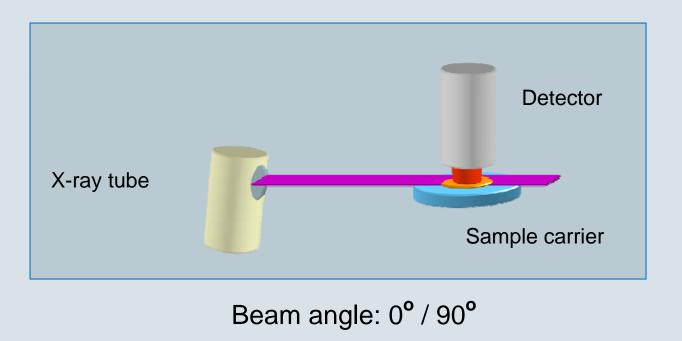
- Introduction to XRF and TXRF
- The S2 PICOFOX Benchtop TXRF system
- Sample Preparations
 - Liquid
 - Suspensions
 - Solid Samples
 - Direct Analysis of Solid Samples
- Instrumental Measurements of Food, Pharmaceutical, and Medicinal Samples.

Contributing Authors

Alexander Seyfarth Product Manager XRF, NA Madison, WI USA

Dr. Hagen Stosnach Applications Scientist TXRF Berlin, Germany

Dr. Armin Gross Global Product Manager TXRF Berlin, Germany



Introduction to XRF and TXRF

Principles of total reflection X-ray fluorescence (TXRF) spectroscopy

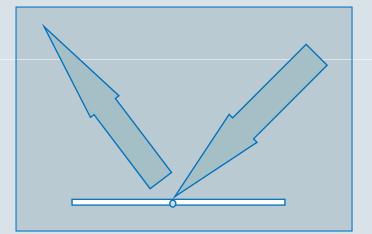
Total reflection X-ray fluorescence spectroscopy

Principles of total reflection X-ray fluorescence spectroscopy

Samples for total reflection X-ray fluorescence spectroscopy:

- Powders: Direct preparation or as suspension
- Liquids: Direct preparation
- always as a thin film, micro fragment or suspension of a powder
- necessary sample amount: Low µg respectively µl range

Principles of total reflection X-ray fluorescence spectroscopy


Quantification in total reflection X-ray fluorescence spectroscopy

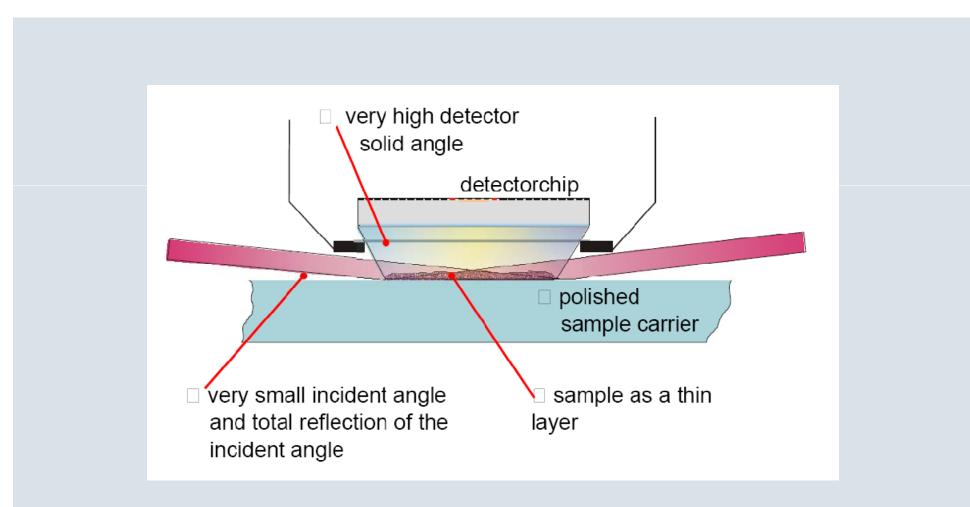
In TXRF the samples are prepared as thin films or layers

Therefore matrix effects are negligible

QUANTIFICATION IS POSSIBLE THROUGH

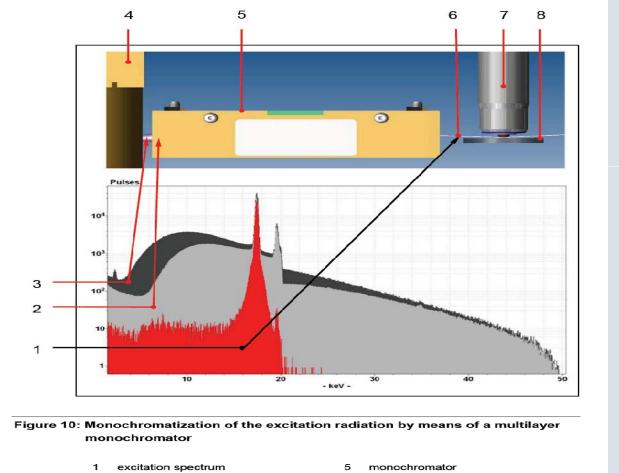
- Sensitivity of the instrument for element lines (energy-dependent)
- Net intensity of element lines
- Known concentration of an internal standard element

Negligible absorption of primary beam and fluorescence radiation


Bruker AXS

06.06.2010

6


Principles of TXRF X-ray Interaction with Sample

Principles of TXRF Key to TXRF's High Signal to Low Background

- 2 spectrum after pre-filtration, filter
- component invisible here
- 3 emission spectrum of the tube
- 4 X-ray tube

- 6 monochromatized
- excitation beam
- 7 detector
- 8 sample carrier

The Instrument S2 PICOFOX

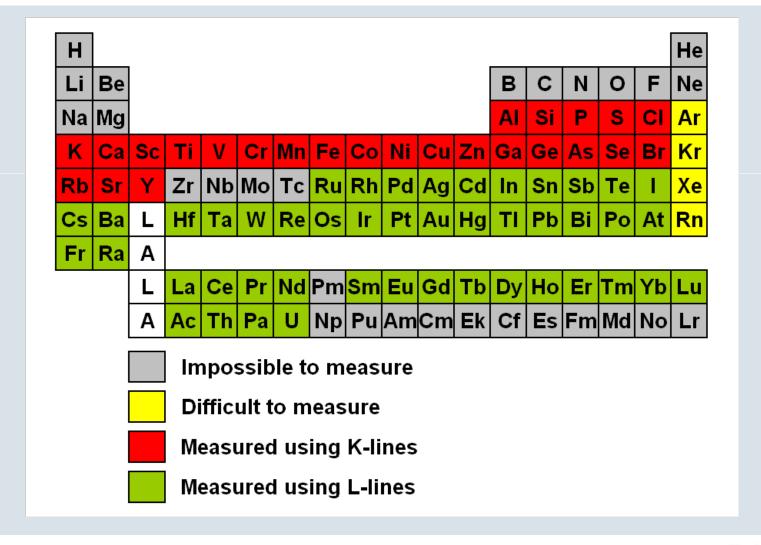
Benchtop TXRF spectrometer "S2 PICOFOX"

- Chemical TXRF Analyzer
- Metal-ceramic X-ray tube
 - Mo anode
 - air-cooled
 - optionally other tubes available
- Multilayer monochromator
- XFlash[©] Silicon Drift Detector
 - electro-thermally cooled
 - ≤149 eV @ 100 kcps
- Automatic version
 - 25 sample cassette

Chemical T-XRF units

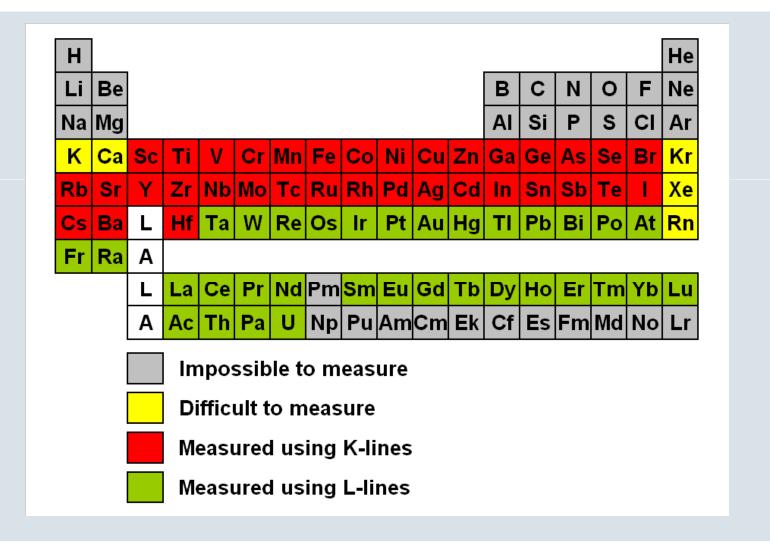
Basic (commercially available) T XRF

- No vacuum chamber, no purge
- No moving monochromator or alignment
- SDD detector: high count rate, resolution and LN2 free!

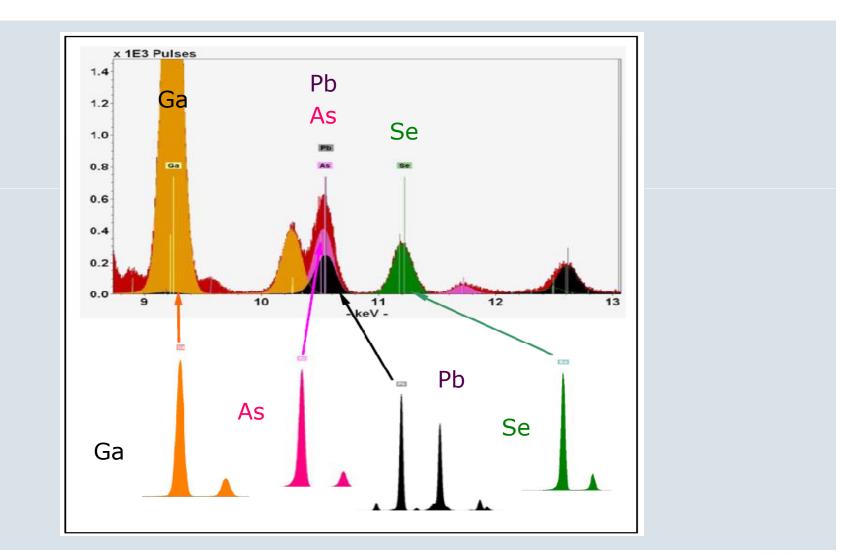

Samples on substrate only

Designed for chemical analysis only

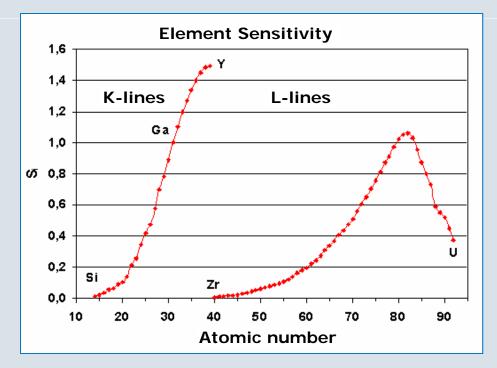
37 kg mobile use possible with 120V/230V



Elements Measured by the Mo PICOFOX



Elements Measured by the W PICOFOX



S2 PICOFOX Overlapping Peaks Separated by Deconvolution

S2 PICOFOX Element sensitivity

- The S2 PICOFOX detects elements from Na(11) to U(92)
- The element sensitivities depend on the atomic number
- The sensitivity factors are calibrated at factory

S2 PICOFOX TXRF Measurement Time Considerations

The choice of measurement time is made in dependence of:

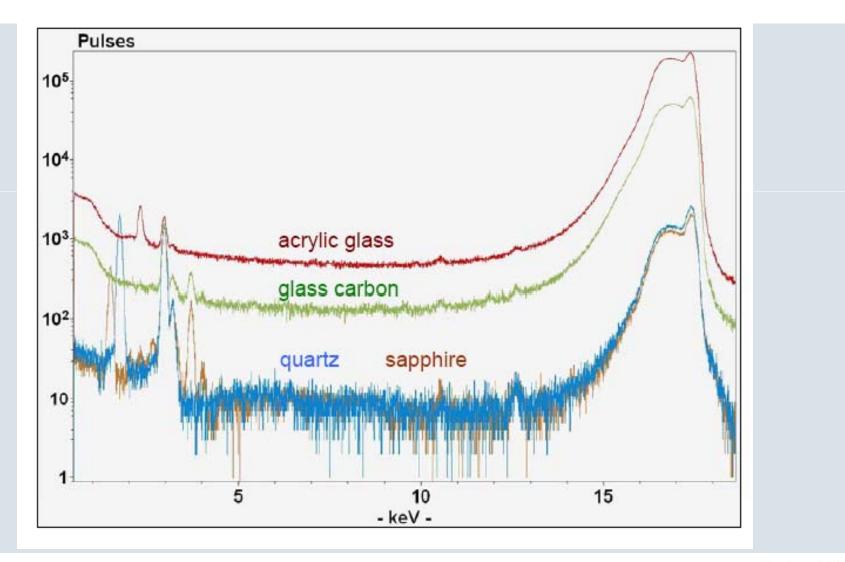
- Concentration ranges
- Necessary accuracy and reproducibility

Typical measurement times are:

- 120 s for a fast overview measurement
- 600 s for the analysis down to the low mg/kg respectively mg/l range
- 1000 s for the analysis in the sub-mg/kg respectively sub-mg/l range

Sample Carrier

018			
I 1	2	3	4


Figure 18: Sample carrier types

- 1 quartz glass
- 2 glass carbon

- 3 sapphire
- 4 acrylic glass

Sample Carrier

117

Why Wait for Sample Prep!

Ease of Use and Versatility of TXRF Analysis

S2 PICOFOX Sample Types Overview

Sample type	Application
Liquids	Orange Juice/ Rum Analysis Tap Water
Suspensions	Blood and serum testing
	Medical Testing
Solids, powders	Wheat Samples
	Pharmaceutical Samples

Sample Preparation Liquid Samples

You'll need just a few steps for the preparation of liquid samples

- Fill sample in micro tube
 - Add internal standard
 - Homogenize
- Pipette on carrier

Sample Preparation Final Steps

sport <u>U</u> ser <u>W</u> indo	ow <u>?</u>		
🖌 🚰 Manual			🕒 🗛 🛔 🛛 🖉 🕨 🗉 💻
Liquid	▼ Y	ll.	1,000 ≑ mg/l 💌
3 Pulses			
			Zn
		"Ôu	

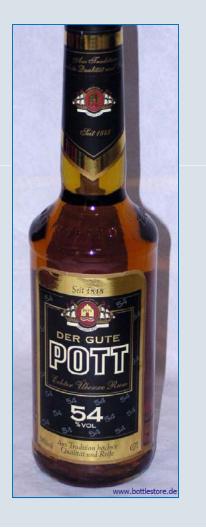
Dry by heat / vacuum

- Load the instrument
 - Start data aquisition

Getting the Lead out (or knowing where it is...)

Sample

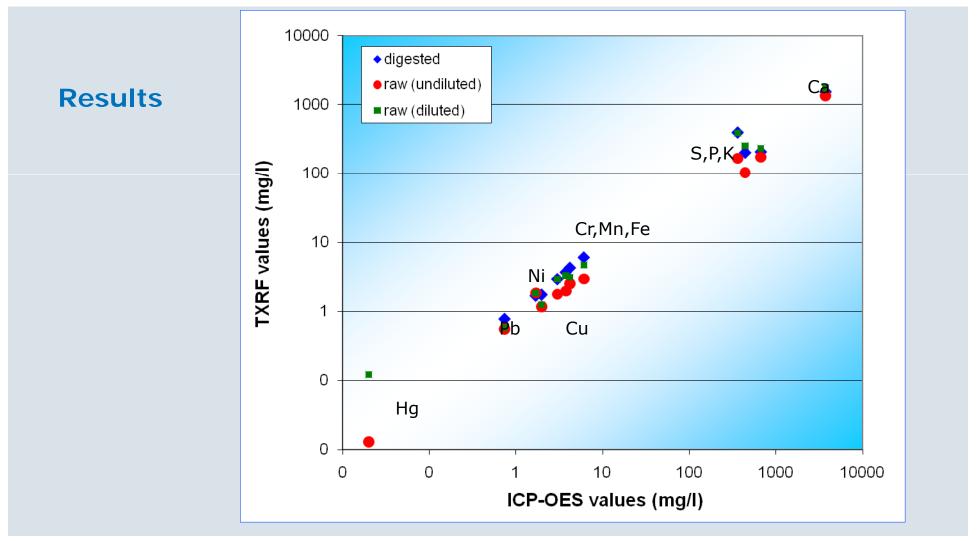
Rum, 18 years old


Comparison between

- Flow-injection hydride-generation atomic absorption spectrometer with flame-quartz atomizer (FI-HG-AAS)
- S2 PICOFOX TXRF spectrometer

Source:

Latif Elçia, Zikri Arslanb & Julian F. Tyson (2009): Determination of lead in wine and rum samples by flow injectionhydride generation-atomic absorption spectrometry, Journal of Hazardous Materials, Volume 162, Issues 2-3,



TXRF on RUM

	TXRF	FI HG AAS
Sample preparation	1. addition of Ga standard to 1 ml rum	 acidification of 170 μl rum to 0.30 Vol-% HCl, addition of 2% colution of
	2. 10 µl sample on quartz carrier	 addition of 3% solution of oxidant K₃Fe(CN)₆ in HCl Neutralisation with NaBH₄ formation of lead hydride (PbH₄)
Measurement	1000 s measurement time	 calibration measurement

Application Sewage & Fresh Water Analysis

Mercury in Tap Water and Orange Juice

Situation

- Sources for mercury release
 - natural sources (volcanoes)
 - industrial activities (coal-fired power plants, gold production, cement, non-ferrous metal industry)
- Maximum contamination levels (MCL) for Hg in drinking water
 - 1 µg/l European Community (directive 98/83)
 - 2 µg/I US-EPA (Safe Drinking Water Act, 1974)

Foodstuff Hg is difficult

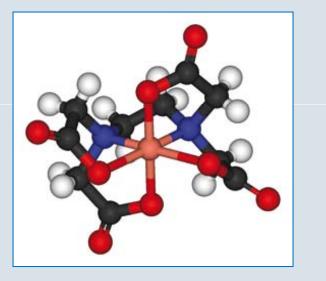
Hg is volatile and easily lost due to heat during preparation or DIGESTIONS! TXRF Instrumentation can readily detect the Hg! But preparation is very important..

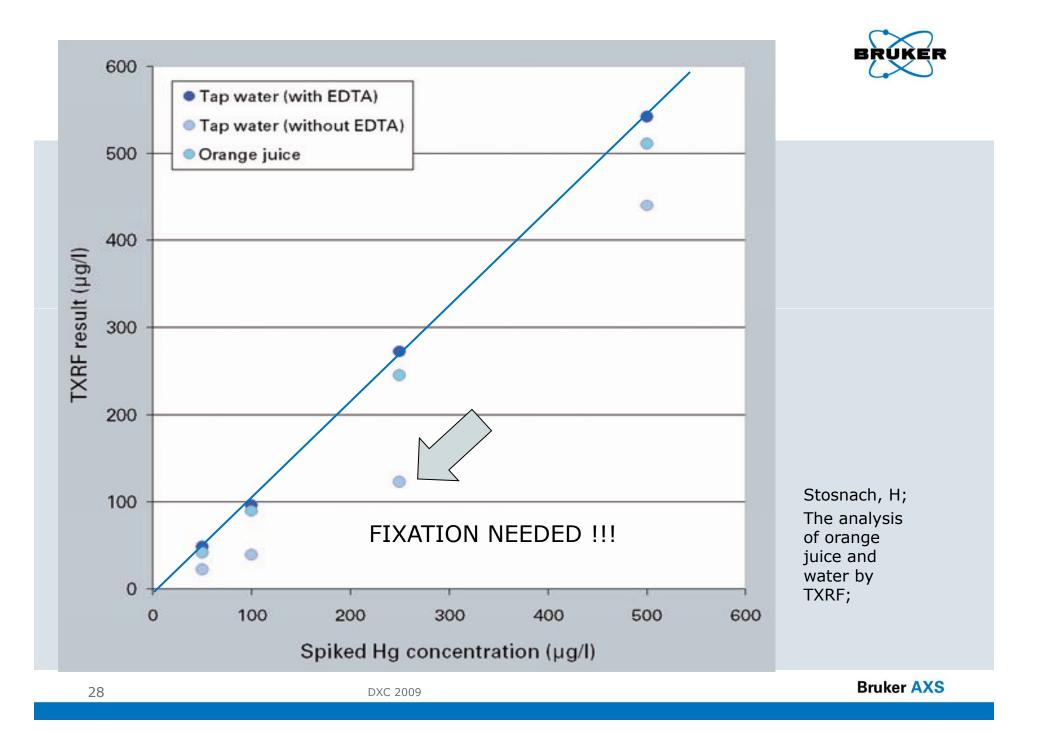
E.g. fish/wheat (FDA limit 1 ppm Hg)

- FREEZE DRYING and GRIDNING followed by mixing with IS and AIR drying
- (achievable as well with WD and ED XRF but calibration is difficult!)

Mercury in Tap Water and Orange Juice

Samples


 tap water and orange juice, spiked with Hg (50 – 500 µg/l)


Sample preparation

- mixing with concentrated EDTA-solution (Hg-fixation)
- internal standardization

Measurements

- Mo-excitation
- Measurement times: 1000 s and 3600 s

Mercury in Tap Water and Orange Juice

Results

- Using fixation reagents, quantitative analysis of Hg in water and beverages is possible
- Sub-ppb detection limits are achievable

	500 —	 Tap water (v Tap water (v Orange juic 	without EDTA)				
	400 —]	e e e e e e e e e e e e e e e e e e e	•	
ult (µg/l)	i 2				, ^{, , ,}		
TXRF result (µg/l)	300 -						
	200 —		, i final de la companya de la compa				
	100 —		٠				-
	0	100	200	300	400	500	600

	Tap water	Tap water	Orange juice
	(1000 s)	(3600 s)	(1000 s)
LLD (µg/I)	1.20	0.58	7.90

Sample Preparation Suspensions

Suspensions can be analyzed just after dilution

- dilute sample with distilled water
 - add internal standard
 - homogenize
- pipette on carrier

Se analysis in Blood/Bodily fluids Blood analysis

Precision and Accuracy

		Se	rum (Cl	Who	le blooc	d (Seronorm	L2)		
Element	Unit	TXRF	s (n=5)	Reference ¹⁾		TXRF	s (n=5)	Reference ²⁾	
Fe	mg/l	440	7,4	435	12	2,9	0,09	1,964	0,20
Cu	µg/l	66	2,2	62	2,1	1685	43	1562	312
Zn	µg/l	501	4,9	504	6,9	2194	118	2225	334
Se	µg/l	12	0,29	12	10	97	18	102	28

- ¹⁾: Sector-Field Inductively-Coupled Plasma Mass Spectroscopy
- ²⁾: Atomic Adsorption Spectroscopy

Foodstuff Hg is difficult

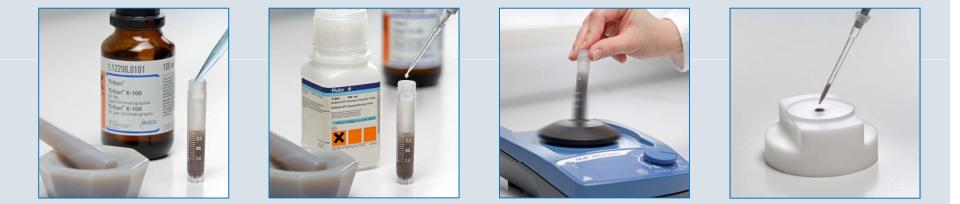
Hg is volatile and easily lost due to heat during preparation or DIGESTIONS!

TXRF Instrumentation can readily detect the Hg! But preparation is very important..

E.g. fish/wheat (FDA limit 1 ppm Hg)

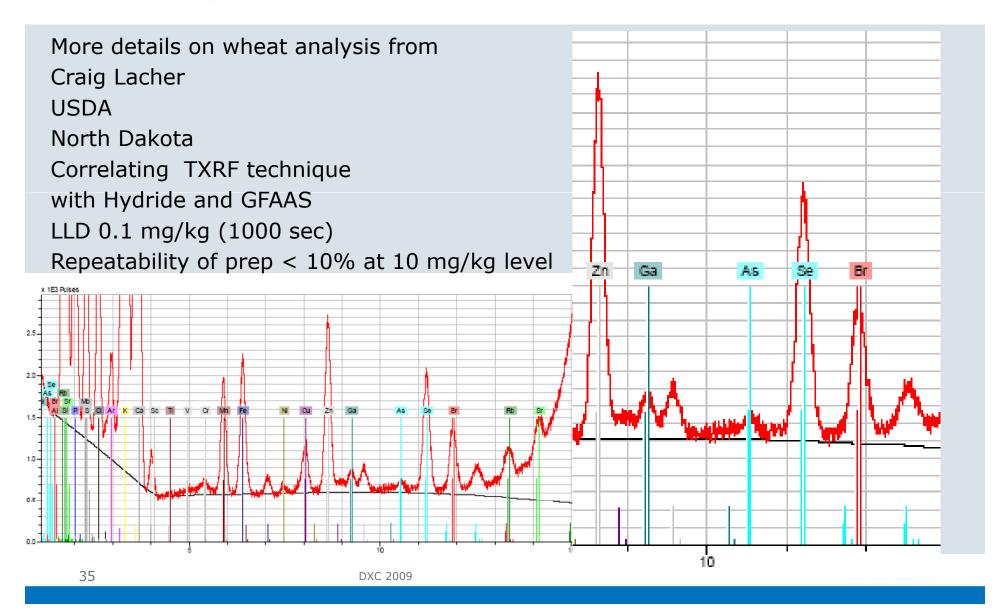
- FREEZE DRYING and GRIDNING followed by mixing with IS and AIR drying
- (achievable as well with WD and ED XRF but calibration is difficult!)

Sample Preparation Solid and Powder Samples I


Solids are ground to fine particle size and resuspended for direct analysis without digestion

- Fill powder in mortar
 - Grind carefully
- Weigh about 20-50 mg
 - Transfer to tube

Sample Preparation Solid and Powder Samples II



- Suspend in detergent solution
 - Add standard
- Homogenize
- Pipette on carrier

Se signal with TXRF (Wheat)

			Energy	Conc.	SigmaC	LLD		1
No.	Element	Line	(keV)	(mg/l)	(mg/l)	(mg/l)	BRUKE	R
1	Si	K12	1.740					ł.
2	S	K12	2.309	683.160	2.015	1.346		
3	CI	K12	2.622	2465.922	4.705	0.750		
4	Ar	K12	2.958					
5	Κ	K12	3.314	698.757	1.427	0.259		
6	Ca	K12	3.692	56.361	0.193	0.129		
7	Sc	K12	4.093					
8	Ti	K12	4.512					
9	V	K12	4.953	0.061	0.023	0.049		
10	Cr	K12	5.415	0.169	0.019	0.039		
11	Mn	K12	5.900	0.035	0.014	0.030		
12	Fe	K12	6.405	1.115	0.015	0.024		
13	Ni	K12	7.480	0.049	0.009	0.018-		
14	Cu	K12	8.046	1.153	0.011	0.016		
15	Zn	K12	8.637	0.793	0.009	0.014		
16	Ga	K12	9.251	5.000	0.018	0.013-		
17	As	K12	10.543	0.032	0.005	0.010		
18	As	L1	1.282					
19	Se	K12	11.224	0.085	0.005	0.010-	· ÷ - <mark>-</mark>	
20	Se	L1	1.379				1	
21	Br	K12	11.924	1.823	0.009	0.010	المطعيط فسيالا ليربيط بالم	A.
22	Br	L1	1.481			-		_
23	Мо	K12	17.480					I
24	Мо	L1	2.292					

Se Analytical Issues

ICP-MS

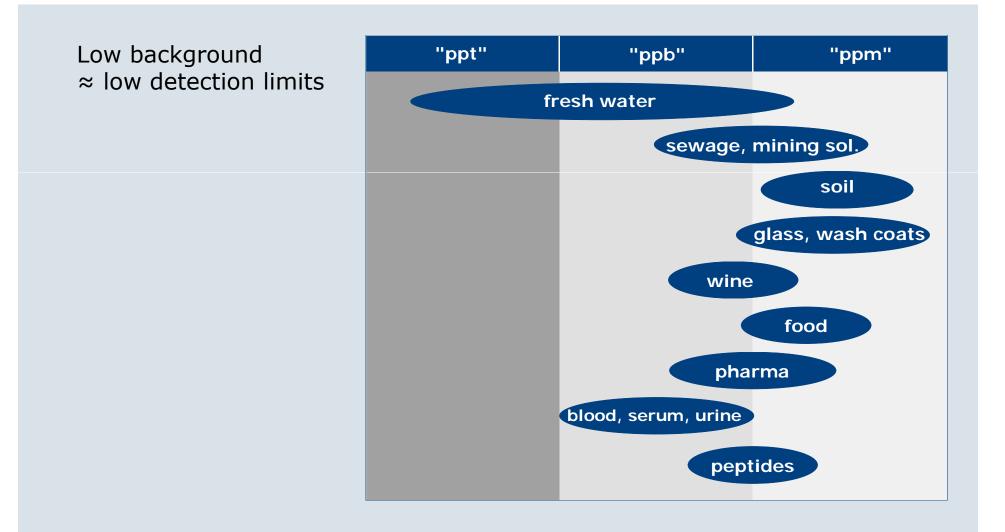
Isotope	Mass	Abundance [%]	Corrections	Potential Interferences
⁷⁴ Se	73.9225	0.89		Ge, ArS, Nd ²⁺ , Sm ²⁺ , Sm ²⁺
⁷⁶ Se	75.9192	9.37	-0.276325 * ⁷² Ge	Ge, ArS, Ar ₂ , Sm ²⁺ , Eu ²⁺ , Gd ²⁺
⁷⁷ Se	76.9199	7.63		ArCl. Ar_2H , Sm^{2+} , Gd^{2+}
⁷⁸ Se	77.9173	23.77		
⁸⁰ Se	79.9165	49.61		KI Ar ₂ BrH Dv^{2+} Gd ²⁺ , Dy^{2+}
⁸² Se	81.9167	8.73	-1.007833 * ⁸³ Kr	Kr, Ar ₂ H BrH SO ₃ Dy ²⁺ , Ho ²⁺ , Er ²⁺

Hydride generation atomic absorption
-Se(IV) then Hydride generation
-Matrix interferences from Fe
GF AAS
Matrix interferences

Application Pharmaceuticals - Purity Control

Recovery results: 5.0 y = 1.1157x + 0.0986 $R^2 = 0.9972$ Measured values As (mg/kg) 4.0 3.0 2.0 1.0 Trace element concentrations of 0.0 1.0 2.0 0.0 3.0 4.0 5.0 Ca, Ti, Cr, Fe, Ni, Cu, Zn and Br Spiked As (mg/kg) were determined simultaneously

Qualitative Solid Sample Preparation Pharmaceutical & Forensic Analysis


Microparticles are measured semi-quantitatively and non-destructively

- Dab vacuum grease on carrier
 - Pick-up some particles with a (glass) rod
 - Drop particles on grease

TXRF Applications Summary 3σ Detection Limits

Summary

PPB-PPM sensitivity range for various elements
Quantify inorganic content of phytochemical standards using affordable sample quantity
Fastest sample preparation
Non-destructive & automated
Very good for Se, Hg
Good for As,Pb
Can screen for the ABSENCE!

Conclusion

Chemical TXRF is a great tool for Food and Nutritional Supplements analysis :

CON (Nutritional supplements):

As per FDA guideline 21 CFR 111 T XRF will need 2 sources to fulfill guidelines (the big three instead of big four for Mo!)

AOAC needs still needs to approve methodology

PRO (ALL)

Large elemental range for screening % to ppb!

Fastest and easiest sample preparation

Fingerprinting to determine "reasonable" contaminants and origin control

ICP MS throughput and "uptime" help

Hg and Se are KEY elements for T XRF use

Cost savings for Screening in Labs ...

Thank You for Your Attention.

Any Questions?

Michael.Rider@bruker-axs.com